论文标题

加权图上的超线性椭圆形不平等

Superlinear elliptic inequalities on weighted graphs

论文作者

Gu, Qingsong, Huang, Xueping, Sun, Yuhua

论文摘要

令$(v,μ)$为无限,连接的,局部有限的加权图。 We study the problem of existence or non-existence of positive solutions to a semi-linear elliptic inequality \begin{equation*} Δu+u^σ\leq0\quad \text{in}\,\,V, \end{equation*} where $Δ$ is the standard graph Laplacian on $V$ and $σ>0$. For $σ\in(0,1]$, the inequality admits no nontrivial positive solution. For $σ>1$, assuming condition \textbf{($p_0$)} on $(V,μ)$, we obtain a sharp condition for nonexistence of positive solutions in terms of the volume growth of the graph, that is \begin{equation*} μ(o,n)\lesssim n^{\ frac {2σ} {σ-1}}(\ ln n)^{\ frac {1} {σ-1}}}} \ end {equation*} 对于v $中的某些$ o \,以及所有足够大的$ n $。对于任何$ \ varepsilon> 0 $,我们可以在同质树$ \ mathbb t_n $上与$μ(o,n)\大约n^{\ frac {\ frac {2σ} {2σ} {σ}} {σ}}}}(\ ln n n)^{\ frac {\ frac {\ frac {1} {1} {1} {1} {1} {1} {1} {1} {\ frac {v n N^{\ frac {1} {1} {1}+n n n N^{\ frac+ $(\ Mathbb t_n,μ)$以说明清晰度 $ \ frac {2σ} {σ-1} $和$ \ frac {1} {σ-1} $

Let $(V,μ)$ be an infinite, connected, locally finite weighted graph. We study the problem of existence or non-existence of positive solutions to a semi-linear elliptic inequality \begin{equation*} Δu+u^σ\leq0\quad \text{in}\,\,V, \end{equation*} where $Δ$ is the standard graph Laplacian on $V$ and $σ>0$. For $σ\in(0,1]$, the inequality admits no nontrivial positive solution. For $σ>1$, assuming condition \textbf{($p_0$)} on $(V,μ)$, we obtain a sharp condition for nonexistence of positive solutions in terms of the volume growth of the graph, that is \begin{equation*} μ(o,n)\lesssim n^{\frac{2σ}{σ-1}}(\ln n)^{\frac{1}{σ-1}} \end{equation*} for some $o\in V$ and all large enough $n$. For any $\varepsilon>0$, we can construct an example on a homogeneous tree $\mathbb T_N$ with $μ(o,n)\approx n^{\frac{2σ}{σ-1}}(\ln n)^{\frac{1}{σ-1}+\varepsilon}$, and a solution to the inequality on $(\mathbb T_N,μ)$ to illustrate the sharpness of $\frac{2σ}{σ-1}$ and $\frac{1}{σ-1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源