论文标题

用于计算机视觉的深神经网络中的黑盒错误诊断:工具的调查

Black-box Error Diagnosis in Deep Neural Networks for Computer Vision: a Survey of Tools

论文作者

Fraternali, Piero, Milani, Federico, Torres, Rocio Nahime, Zangrando, Niccolò

论文摘要

深层神经网络(DNN)在各种任务中的应用需要应对这些体系结构的复杂和不透明性质的方法。当有黄金标准可用时,性能评估将DNN视为黑匣子,并根据将预测与地面真相的比较进行计算标准指标。对性能的更深入的了解需要超越此类评估指标来诊断模型行为和预测错误。可以通过两种互补的方式实现此目标。一方面,模型解释技术“打开框”并评估输入,内层和输出之间的关系,以确定最有可能导致性能损失的体系结构模块。另一方面,黑框错误诊断技术研究了模型响应与未用于训练的输入的某些特性之间的相关性,以确定使模型失败的输入的特征。两种方法都提供了如何改善建筑和/或培训过程的提示。本文重点介绍了DNN在计算机视觉(CV)任务中的应用,并对支持Black-Box性能诊断范式的工具进行了调查。它说明了当前建议的特征和空白,讨论了相关的研究方向,并简要概述了CV以外的其他部门的诊断工具。

The application of Deep Neural Networks (DNNs) to a broad variety of tasks demands methods for coping with the complex and opaque nature of these architectures. When a gold standard is available, performance assessment treats the DNN as a black box and computes standard metrics based on the comparison of the predictions with the ground truth. A deeper understanding of performances requires going beyond such evaluation metrics to diagnose the model behavior and the prediction errors. This goal can be pursued in two complementary ways. On one side, model interpretation techniques "open the box" and assess the relationship between the input, the inner layers and the output, so as to identify the architecture modules most likely to cause the performance loss. On the other hand, black-box error diagnosis techniques study the correlation between the model response and some properties of the input not used for training, so as to identify the features of the inputs that make the model fail. Both approaches give hints on how to improve the architecture and/or the training process. This paper focuses on the application of DNNs to Computer Vision (CV) tasks and presents a survey of the tools that support the black-box performance diagnosis paradigm. It illustrates the features and gaps of the current proposals, discusses the relevant research directions and provides a brief overview of the diagnosis tools in sectors other than CV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源