论文标题
一个新的框架,可以共同压缩和索引遥感图像,以进行有效的基于内容的检索
A Novel Framework to Jointly Compress and Index Remote Sensing Images for Efficient Content-Based Retrieval
论文作者
论文摘要
遥感(RS)图像通常以压缩格式存储,以减少档案的存储大小。因此,RS中的现有基于内容的图像检索(CBIR)系统需要在应用CBIR之前进行解码图像(在大规模CBIR问题的情况下,这是计算要求的)。为了解决这个问题,在本文中,我们提出了一个联合框架,该框架同时学习RS图像压缩和索引。因此,它消除了在应用CBIR之前解码RS图像的需求。提出的框架由两个模块组成。第一个模块根据自动编码器体系结构压缩RS图像。第二个模块通过采用柔软的成对,平衡和分类损失函数来生成具有高歧视能力的哈希码。我们还引入了一种具有梯度操纵技术的两阶段学习策略,以获得与RS图像索引和压缩兼容的图像表示。实验结果表明,与Rs中广泛使用的方法相比,该框架的功效。该框架的代码可在https://git.tu-berlin.de/rsim/rs-jcif上获得。
Remote sensing (RS) images are usually stored in compressed format to reduce the storage size of the archives. Thus, existing content-based image retrieval (CBIR) systems in RS require decoding images before applying CBIR (which is computationally demanding in the case of large-scale CBIR problems). To address this problem, in this paper, we present a joint framework that simultaneously learns RS image compression and indexing. Thus, it eliminates the need for decoding RS images before applying CBIR. The proposed framework is made up of two modules. The first module compresses RS images based on an auto-encoder architecture. The second module produces hash codes with a high discrimination capability by employing soft pairwise, bit-balancing and classification loss functions. We also introduce a two stage learning strategy with gradient manipulation techniques to obtain image representations that are compatible with both RS image indexing and compression. Experimental results show the efficacy of the proposed framework when compared to widely used approaches in RS. The code of the proposed framework is available at https://git.tu-berlin.de/rsim/RS-JCIF.