论文标题
Riemann假设的证明
Proof of the Riemann Hypothesis
论文作者
论文摘要
Riemann假设指出,Zeta函数的所有非平凡零点的实际部分必须为$ \ frac {1} {2} $,是数字理论中最重要的未经证实的假设之一。在本文中,我们将通过使用积分表示$ζ(s)= \ frac {s} {s-1} -s \ int_ {1}^{\ infty} \ frac {x- \ frac {x- \ lfloor x \ rfloor x \ rfloor} {对于Zeta函数的实际部分。
The Riemann hypothesis, stating that the real part of all non-trivial zero points fo the zeta function must be $\frac{1}{2}$, is one of the most important unproven hypothesises in number theory. In this paper we will proof the Riemann hypothesis by using the integral representation $ζ(s)=\frac{s}{s-1}-s\int_{1}^{\infty}\frac{x-\lfloor x\rfloor}{x^{s+1}}\,\text{d}x$ and solving the integral for the real part of the zeta function.