论文标题

选择和组合互补的特征表示和分类器以进行仇恨言语检测

Selecting and combining complementary feature representations and classifiers for hate speech detection

论文作者

Cruz, Rafael M. O., de Sousa, Woshington V., Cavalcanti, George D. C.

论文摘要

由于每天生成的数据大量,仇恨言论是社交网络中的主要问题。最近的著作证明了机器学习(ML)在处理区分仇恨帖子与讽刺或令人反感的语言所需的细微差别时的有用性。通过更改从文本中提取的特征或所使用的分类算法提取的特征,已经提出了许多用于仇恨言论检测的ML解决方案。但是,大多数作品仅考虑一种特征提取和分类算法。这项工作认为,需要多种特征提取技术和不同的分类模型的组合。我们提出了一个框架,以分析多种特征提取和分类技术之间的关系,以了解它们如何相互补充。该框架用于选择互补技术的子集,以组成鲁棒的多个分类器系统(MCS)进行仇恨语音检测。考虑四个仇恨言语分类数据集的实验研究表明,提出的框架是分析和设计为此任务的高性能MC的有前途的方法。使用所提出的框架获得的MCS系统显着胜过所有模型和均质和异质选择启发式方法的组合,这表明具有适当的选择方案的重要性。源代码,数字和数据集拆分可以在GitHub存储库中找到:https://github.com/menelau/hate-speech-mcs。

Hate speech is a major issue in social networks due to the high volume of data generated daily. Recent works demonstrate the usefulness of machine learning (ML) in dealing with the nuances required to distinguish between hateful posts from just sarcasm or offensive language. Many ML solutions for hate speech detection have been proposed by either changing how features are extracted from the text or the classification algorithm employed. However, most works consider only one type of feature extraction and classification algorithm. This work argues that a combination of multiple feature extraction techniques and different classification models is needed. We propose a framework to analyze the relationship between multiple feature extraction and classification techniques to understand how they complement each other. The framework is used to select a subset of complementary techniques to compose a robust multiple classifiers system (MCS) for hate speech detection. The experimental study considering four hate speech classification datasets demonstrates that the proposed framework is a promising methodology for analyzing and designing high-performing MCS for this task. MCS system obtained using the proposed framework significantly outperforms the combination of all models and the homogeneous and heterogeneous selection heuristics, demonstrating the importance of having a proper selection scheme. Source code, figures, and dataset splits can be found in the GitHub repository: https://github.com/Menelau/Hate-Speech-MCS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源