论文标题

关于人类口述历史访谈的人类注释中的歧义的研究,以感知情绪识别和情感分析

A Study on the Ambiguity in Human Annotation of German Oral History Interviews for Perceived Emotion Recognition and Sentiment Analysis

论文作者

Gref, Michael, Matthiesen, Nike, Venugopala, Sreenivasa Hikkal, Satheesh, Shalaka, Vijayananth, Aswinkumar, Ha, Duc Bach, Behnke, Sven, Köhler, Joachim

论文摘要

对于视听访谈档案中的研究,通常不仅感兴趣的话,而且还引起了人们的关注。情感分析和情感识别可以帮助捕获,分类和使这些不同的方面可以搜索。特别是,对于口述历史档案,这种索引技术可能引起人们的极大兴趣。这些技术可以帮助了解情绪在历史记忆中的作用。但是,人类经常对情感和情感模棱两可。此外,口述历史访谈具有多层的复杂水平,有时是矛盾的,有时是非常微妙的情感方面。因此,偶然机器和人类已将其捕获并分配给预定义的类别的问题。本文调查了德国口述历史访谈中人类对情绪和情感的看法的歧义以及对机器学习系统的影响。我们的实验揭示了人类对不同情绪的看法的实质性差异。此外,我们报告了正在进行的机器学习实验不同方式的情况。我们表明,人类的感知歧义和其他挑战,例如阶级失衡和缺乏培训数据,目前限制了这些技术在口述历史档案中的机会。但是,我们的工作揭示了有希望的观察结果和进一步研究的可能性。

For research in audiovisual interview archives often it is not only of interest what is said but also how. Sentiment analysis and emotion recognition can help capture, categorize and make these different facets searchable. In particular, for oral history archives, such indexing technologies can be of great interest. These technologies can help understand the role of emotions in historical remembering. However, humans often perceive sentiments and emotions ambiguously and subjectively. Moreover, oral history interviews have multi-layered levels of complex, sometimes contradictory, sometimes very subtle facets of emotions. Therefore, the question arises of the chance machines and humans have capturing and assigning these into predefined categories. This paper investigates the ambiguity in human perception of emotions and sentiment in German oral history interviews and the impact on machine learning systems. Our experiments reveal substantial differences in human perception for different emotions. Furthermore, we report from ongoing machine learning experiments with different modalities. We show that the human perceptual ambiguity and other challenges, such as class imbalance and lack of training data, currently limit the opportunities of these technologies for oral history archives. Nonetheless, our work uncovers promising observations and possibilities for further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源