论文标题

矩阵模型中的目标空间纠缠

Target space entanglement in a matrix model for the bubbling geometry

论文作者

Tsuchiya, Asato, Yamashiro, Kazushi

论文摘要

我们在复杂的矩阵模型中研究了目标空间纠缠熵,该模型描述了$ \ Mathcal {n} = 4 $ Super Yang-Mills理论中的手性原发性扇区,该型号与冒泡的广告几何形状有关。矩阵模型的目标空间是一个二维平面,其中复合矩阵的特征值分布。特征值被视为费米子的位置坐标,而特征值分布对应于费米子形成的液滴。液滴用一个指定气泡几何形状中的边界条件的液滴识别。我们考虑矩阵模型中的状态,对应于$ ads_5 \ times s^5 $,广告巨型重力和冒泡几何形状中的巨型重力。我们计算矩阵模型中每个状态的子区域的目标空间纠缠熵以及冒泡几何形状中子区域边界的面积,并在它们之间找到定性一致。

We study the target space entanglement entropy in a complex matrix model that describes the chiral primary sector in $\mathcal{N}=4$ super Yang-Mills theory, which is associated with the bubbling AdS geometry. The target space for the matrix model is a two-dimensional plane where the eigenvalues of the complex matrix distribute. The eigenvalues are viewed as the position coordinates of fermions, and the eigenvalue distribution corresponds to a droplet formed by the fermions. The droplet is identified with one that specifies a boundary condition in the bubbling geometry. We consider states in the matrix model that correspond to $AdS_5\times S^5$, an AdS giant graviton and a giant graviton in the bubbling geometry. We calculate the target space entanglement entropy of a subregion for each of the states in the matrix model as well as the area of the boundary of the subregion in the bubbling geometry, and find a qualitative agreement between them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源