论文标题
基思和扎内洛在$ t $ regular分区上的某些猜想的证明
Proofs of some conjectures of Keith and Zanello on $t$-regular partition
论文作者
论文摘要
对于一个正整数$ t $,令$ b_ {t}(n)$表示非负整数$ n $的$ t $ regular-regular分区数。在最近的一篇论文中,基思(Keith)和扎内洛(Zanello)建立了一致性和自相似结果的无限家庭,以$ b_ {t}(n)$ $ 2 $ $ 2 $,以某些$ t $的值。此外,他们提出了一些关于$ b_t(n)$ modulo $ 2 $的自相似性的猜想。在本文中,我们证明了他们在$ b_3(n)$和$ b_ {25}(n)$上的猜想。我们还证明了$ b_ {21}(n)$ modulo $ 2 $的自相似性结果。
For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.