论文标题

SAR图像中的飞机检测的注意力特征细化和对齐网络

Attentional Feature Refinement and Alignment Network for Aircraft Detection in SAR Imagery

论文作者

Zhao, Yan, Zhao, Lingjun, Liu, Zhong, Hu, Dewen, Kuang, Gangyao, Liu, Li

论文摘要

合成孔径雷达(SAR)图像中的飞机检测是SAR自动目标识别(SAR ATR)区域的一项具有挑战性的任务,这是由于飞机的外观极为离散的外观,明显的内部内变化,小尺寸和严重的背景干扰。在本文中,提出了一个单发探测器,即注意特征的细化和对齐网络(AFRAN)提议以竞争力和速度的速度和速度检测SAR图像中的飞机。具体而言,在我们的方法中精心设计了三个重要组成部分,包括注意特征融合模块(AFFM),可变形的侧向连接模块(DLCM)和锚定引导的检测模块(ADM),是在我们的方法中精心设计的,用于完善和对齐飞机的信息特征。为了代表较少干扰的飞机的特征,飞机的低级纹理和高级语义特征在AFFM中融合并精炼。 DLCM促进了飞机离散的后扫描点与卷积抽样点之间的一致性。最终,基于精制锚修改的对齐特征,准确地预测了飞机的位置。为了评估我们的方法的性能,收集了一个自建造的SAR飞机切片数据集和大型场景SAR图像。大量的定量和定性实验和详细的分析说明了这三个组件的有效性。此外,与其他域特异性(例如,DAPN,PADN和一般CNN的方法,例如FPN,FPN,Cascade R-CNN,SSD,SSD,SSD,Repinedet和RPDET)相比,我们的方法最高的检测准确性和竞争速度是实现的。

Aircraft detection in Synthetic Aperture Radar (SAR) imagery is a challenging task in SAR Automatic Target Recognition (SAR ATR) areas due to aircraft's extremely discrete appearance, obvious intraclass variation, small size and serious background's interference. In this paper, a single-shot detector namely Attentional Feature Refinement and Alignment Network (AFRAN) is proposed for detecting aircraft in SAR images with competitive accuracy and speed. Specifically, three significant components including Attention Feature Fusion Module (AFFM), Deformable Lateral Connection Module (DLCM) and Anchor-guided Detection Module (ADM), are carefully designed in our method for refining and aligning informative characteristics of aircraft. To represent characteristics of aircraft with less interference, low-level textural and high-level semantic features of aircraft are fused and refined in AFFM throughly. The alignment between aircraft's discrete back-scatting points and convolutional sampling spots is promoted in DLCM. Eventually, the locations of aircraft are predicted precisely in ADM based on aligned features revised by refined anchors. To evaluate the performance of our method, a self-built SAR aircraft sliced dataset and a large scene SAR image are collected. Extensive quantitative and qualitative experiments with detailed analysis illustrate the effectiveness of the three proposed components. Furthermore, the topmost detection accuracy and competitive speed are achieved by our method compared with other domain-specific,e.g., DAPN, PADN, and general CNN-based methods,e.g., FPN, Cascade R-CNN, SSD, RefineDet and RPDet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源