论文标题

零膨胀的流行流行模型,该模型具有在德国的麻疹时间序列的应用

A zero-inflated endemic-epidemic model with an application to measles time series in Germany

论文作者

Lu, Junyi, Meyer, Sebastian

论文摘要

在建模传染病发生时,经常会遇到具有过多零的计数数据。由于非流动时期以及按年龄组或地区,零通货膨胀程度可能会随着时间而变化。现有的地方性流动建模框架(又名HHH)缺乏适当的治疗方法,用于过度零的监视数据,因为它仅限于泊松和负二项式分布。在本文中,我们提出了一个多变量零膨胀的流行流行模型,具有随机效应以扩展HHH。使用分析衍生物,可以通过(惩罚)最大似然推理共同有效地估算新的零通胀和模型HHH部分的参数。一项模拟研究证实了置信区间的适当收敛和覆盖概率。在2005--2018的16个德国州中,将模型应用于麻疹计数,表明零通货膨胀可改善概率预测。

Count data with excessive zeros are often encountered when modelling infectious disease occurrence. The degree of zero inflation can vary over time due to non-epidemic periods as well as by age group or region. The existing endemic-epidemic modelling framework (aka HHH) lacks a proper treatment for surveillance data with excessive zeros as it is limited to Poisson and negative binomial distributions. In this paper, we propose a multivariate zero-inflated endemic-epidemic model with random effects to extend HHH. Parameters of the new zero-inflation and the HHH part of the model can be estimated jointly and efficiently via (penalized) maximum likelihood inference using analytical derivatives. A simulation study confirms proper convergence and coverage probabilities of confidence intervals. Applying the model to measles counts in the 16 German states, 2005--2018, shows that the added zero-inflation improves probabilistic forecasts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源