论文标题

3维混合BF理论和Hitchin的整合系统

3-dimensional mixed BF theory and Hitchin's integrable system

论文作者

Vicedo, Benoit, Winstone, Jennifer

论文摘要

已知仿射高丁模型与汉密尔顿框架中的四维混合拓扑塑形的切尔尼·西蒙斯理论相关,是众所周知的。我们表明,与有限的二维半密布谎言代数相关的有限gaudin模型,或者更普遍地是在任意riemann表面上的腐烂的hitchin系统,同样可以从汉密尔顿框架中的3维混合BF理论的类似规格固定中获得。

The affine Gaudin model, associated with an untwisted affine Kac-Moody algebra, is known to arise from a certain gauge fixing of 4-dimensional mixed topological-holomorphic Chern-Simons theory in the Hamiltonian framework. We show that the finite Gaudin model, associated with a finite-dimensional semisimple Lie algebra, or more generally the tamely ramified Hitchin system on an arbitrary Riemann surface, can likewise be obtained from a similar gauge fixing of 3-dimensional mixed BF theory in the Hamiltonian framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源