论文标题
通过转移学习的相对论重离子碰撞的有效仿真
Efficient emulation of relativistic heavy ion collisions with transfer learning
论文作者
论文摘要
可以使用大型强子对撞机(LHC)和相对论重离子对撞机(RHIC)的测量值来研究Quark-Gluon等离子体的特性。对这些属性的系统限制必须结合不同碰撞系统的测量结果,并有条不紊地说明了实验和理论不确定性。这样的研究需要大量昂贵的数值模拟。尽管计算廉价的替代模型(“模拟器”)可用于有效近似跨广泛模型参数的重离子模拟的预测,但是训练可靠的仿真器仍然是一项计算昂贵的任务。我们使用转移学习将一个模型模拟器的参数依赖性映射到另一个模型的参数依赖性,利用了重离子碰撞的不同模拟之间的相似性。通过将大量仿真的需求限制为一个模拟器,该技术在研究多个碰撞系统和探索不同模型时降低了综合不确定性量化的数值成本。
Measurements from the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) can be used to study the properties of quark-gluon plasma. Systematic constraints on these properties must combine measurements from different collision systems and methodically account for experimental and theoretical uncertainties. Such studies require a vast number of costly numerical simulations. While computationally inexpensive surrogate models ("emulators") can be used to efficiently approximate the predictions of heavy ion simulations across a broad range of model parameters, training a reliable emulator remains a computationally expensive task. We use transfer learning to map the parameter dependencies of one model emulator onto another, leveraging similarities between different simulations of heavy ion collisions. By limiting the need for large numbers of simulations to only one of the emulators, this technique reduces the numerical cost of comprehensive uncertainty quantification when studying multiple collision systems and exploring different models.