论文标题

压缩光滑的稀疏分解

Compressed Smooth Sparse Decomposition

论文作者

Mou, Shancong, Shi, Jianjun

论文摘要

基于图像的异常检测系统在各种制造应用中至关重要。在图像传感技术的快速发展下,近年来,此类系统的分辨率和采集率正在显着提高。这可以实时检测微小的缺陷。但是,如此高的分辨率和获取率不仅会降低图像处理算法的速度,而且还会增加数据存储和传输成本。为了解决此问题,我们提出了一种具有理论性能保证的快速和数据效率方法,该方法适用于具有光滑背景的图像中的稀疏异常检测(光滑加上稀疏信号)。所提出的方法,称为压缩平滑稀疏分解(CSSD),是一种单步方法,它统一了压缩图像采集和基于分解的图像处理技术。为了在高维情况下进一步提高其性能,提出了Kronecker压缩平滑的稀疏分解(KRONCSSD)方法。与传统的平滑和稀疏分解算法相比,通过可忽略不计的性能损失可以实现显着的传输成本和计算速度提升。在各种应用中的仿真示例和几个案例研究说明了提出的框架的有效性。

Image-based anomaly detection systems are of vital importance in various manufacturing applications. The resolution and acquisition rate of such systems is increasing significantly in recent years under the fast development of image sensing technology. This enables the detection of tiny defects in real-time. However, such a high resolution and acquisition rate of image data not only slows down the speed of image processing algorithms but also increases data storage and transmission cost. To tackle this problem, we propose a fast and data-efficient method with theoretical performance guarantee that is suitable for sparse anomaly detection in images with a smooth background (smooth plus sparse signal). The proposed method, named Compressed Smooth Sparse Decomposition (CSSD), is a one-step method that unifies the compressive image acquisition and decomposition-based image processing techniques. To further enhance its performance in a high-dimensional scenario, a Kronecker Compressed Smooth Sparse Decomposition (KronCSSD) method is proposed. Compared to traditional smooth and sparse decomposition algorithms, significant transmission cost reduction and computational speed boost can be achieved with negligible performance loss. Simulation examples and several case studies in various applications illustrate the effectiveness of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源