论文标题
可解释的人类代理团队的新兴沟通
Interpretable Learned Emergent Communication for Human-Agent Teams
论文作者
论文摘要
学习可解释的沟通对于多代理和人类代理团队(HAT)至关重要。在针对部分观察到的环境的多代理增强学习中,代理可以通过学习的沟通向他人传达信息,从而使团队可以完成任务。受人类语言的启发,最近的作品研究离散(仅使用一组有限的令牌)和稀疏(仅在某些时间阶段进行交流)的沟通。但是,尚未研究这种交流在人类代理团队实验中的实用性。在这项工作中,我们分析了稀疏 - 污点方法的功效,以产生新兴的沟通,从而使高级和人类代理团队的绩效。我们开发仅通过代理的团队,通过我们的执法人员计划稀少地进行沟通,该计划足够将通信限制在任何预算上。我们的结果表明,在基准环境和任务中没有损失或最小的性能丧失。在在基准环境中测试的人类代理团队中,使用执行者对代理进行了建模,我们发现一种基于原型的方法会产生有意义的离散令牌,从而使人类合作伙伴能够比单热基线更快,更好地学习代理通信。其他帽子实验表明,适当的稀疏度水平在与代理团队交流并带来卓越的团队绩效时,人类的认知负荷降低了人类的认知负担。
Learning interpretable communication is essential for multi-agent and human-agent teams (HATs). In multi-agent reinforcement learning for partially-observable environments, agents may convey information to others via learned communication, allowing the team to complete its task. Inspired by human languages, recent works study discrete (using only a finite set of tokens) and sparse (communicating only at some time-steps) communication. However, the utility of such communication in human-agent team experiments has not yet been investigated. In this work, we analyze the efficacy of sparse-discrete methods for producing emergent communication that enables high agent-only and human-agent team performance. We develop agent-only teams that communicate sparsely via our scheme of Enforcers that sufficiently constrain communication to any budget. Our results show no loss or minimal loss of performance in benchmark environments and tasks. In human-agent teams tested in benchmark environments, where agents have been modeled using the Enforcers, we find that a prototype-based method produces meaningful discrete tokens that enable human partners to learn agent communication faster and better than a one-hot baseline. Additional HAT experiments show that an appropriate sparsity level lowers the cognitive load of humans when communicating with teams of agents and leads to superior team performance.