论文标题

通过对抗网络预测隐私意识的人类流动性

Privacy-Aware Human Mobility Prediction via Adversarial Networks

论文作者

Zhan, Yuting, Kyllo, Alex, Mashhadi, Afra, Haddadi, Hamed

论文摘要

随着各种移动设备和基于位置的服务在不同的智能城市场景和应用中越来越多地开发,由于数据收集和共享,许多意外的隐私泄漏已经出现。尽管这些地理位置数据可以提供对人类流动性模式的丰富了解并解决各种社会研究问题,但对用户敏感信息的隐私问题限制了其利用。在本文中,我们设计并实施了一种基于LSTM的新型对抗机制,并具有代表性学习,以实现原始地理分配数据(移动性数据)的隐私权特征表示形式,以共享目的。我们根据轨迹重建风险,用户重新识别风险和移动性可预测性来量化移动性数据集的公用事业权利权衡。我们提出的体系结构报告了帕累托边境分析,该分析使用户能够评估这一权衡,这是拉格朗日减肥体重参数的函数。四个代表性移动数据集的广泛比较结果证明了我们提出的架构的优越性以及提议的隐私功能提取器的效率。我们的结果表明,通过探索帕累托最佳设置,我们可以同时增加隐私(45%)和公用事业(32%)。

As various mobile devices and location-based services are increasingly developed in different smart city scenarios and applications, many unexpected privacy leakages have arisen due to geolocated data collection and sharing. While these geolocated data could provide a rich understanding of human mobility patterns and address various societal research questions, privacy concerns for users' sensitive information have limited their utilization. In this paper, we design and implement a novel LSTM-based adversarial mechanism with representation learning to attain a privacy-preserving feature representation of the original geolocated data (mobility data) for a sharing purpose. We quantify the utility-privacy trade-off of mobility datasets in terms of trajectory reconstruction risk, user re-identification risk, and mobility predictability. Our proposed architecture reports a Pareto Frontier analysis that enables the user to assess this trade-off as a function of Lagrangian loss weight parameters. The extensive comparison results on four representative mobility datasets demonstrate the superiority of our proposed architecture and the efficiency of the proposed privacy-preserving features extractor. Our results show that by exploring Pareto optimal setting, we can simultaneously increase both privacy (45%) and utility (32%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源