论文标题

Gordan定理和Noether通过Gorenstein Rings

A theorem of Gordan and Noether via Gorenstein rings

论文作者

Bricalli, Davide, Favale, Filippo F., Pirola, Gian Pietro

论文摘要

Gordan和Noether在其基本定理中证明了Hypersurface $ X = V(f)\ subseteq \ Mathbb {p}^n $,with $ n \ leq 3 $是锥体,并且仅当$ f $消失了Hessian(即Hessian Matrix的决定性)时。他们还表明,如果$ n \ geq 4 $,通过给出一些反例,则该声明是错误的。自从他们的证据以来,文献中已经提出了其他一些人。在本文中,我们通过使用不同的观点给出了一个新的,涉及对标准的Artinian Gorenstein $ \ Mathbb {K} $ - 代数和Lefschetz属性进行研究。作为我们设置的进一步应用,我们证明了标准的Artinian Gorenstein代数$ r = \ Mathbb {k} [x_0,\ dots,x_4]/j $,$ j $由常规序列产生的$ j $具有强大的lefschetz属性。特别是,这适用于与平滑立方三倍相关的雅各布环。

Gordan and Noether proved in their fundamental theorem that an hypersurface $X=V(F)\subseteq \mathbb{P}^n$ with $n\leq 3$ is a cone if and only if $F$ has vanishing hessian (i.e. the determinant of the Hessian matrix). They also showed that the statement is false if $n\geq 4$, by giving some counterexamples. Since their proof, several others have been proposed in the literature. In this paper we give a new one by using a different perspective which involves the study of standard Artinian Gorenstein $\mathbb{K}$-algebras and the Lefschetz properties. As a further application of our setting, we prove that a standard Artinian Gorenstein algebra $R=\mathbb{K}[x_0,\dots,x_4]/J$ with $J$ generated by a regular sequence of quadrics has the strong Lefschetz property. In particular, this holds for Jacobian rings associated to smooth cubic threefolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源