论文标题

使用机器学习来推断$ s_8(z)$和$γ(z)$,并使用宇宙增长率测量

Inferring $S_8(z)$ and $γ(z)$ with cosmic growth rate measurements using machine learning

论文作者

Avila, Felipe, Bernui, Armando, Bonilla, Alexander, Nunes, Rafael C.

论文摘要

宇宙参数$ s_8 $的测量由宇宙微波背景和大规模结构数据显示出来,这表明它们在这些早期和晚期宇宙学示踪剂中物质的聚类特征可能会有所不同。在这项工作中,我们使用旨在解决贝叶斯回归方法(称为高斯流程回归的回归方法)来量化$ s_8 $最高$ z \ sim 1.5 $的宇宙演变。为此,我们提出了一种新颖的方法,首先找到函数$σ_8(z)$的演变,然后找到函数$ s_8(z)$。作为子产品,我们获得了最小宇宙模型依赖的$σ_8(z = 0)$和$ s_8(z = 0)$估计。我们根据非相关数据的标准选择增长率$ f(z)$的独立数据测量和$ [fσ_8](z)$的独立数据测量值,然后我们执行这些数据集的高斯重建,以获得$σ_8(z)$,$ s_8(z)$,以及增长Index $ unitex $ unitex $ unitex $ cosmic Evolution。我们的统计分析表明,$ S_8(Z)$与Planck $λ$ CDM Cosmology兼容;当目前进行评估时,我们发现$σ_8(z = 0)= 0.766 \ pm 0.116 $和$ s_8(z = 0)= 0.732 \ pm 0.115 $。将我们的方法应用于增长指数,我们发现$γ(z = 0)= 0.465 \ pm 0.140 $。此外,我们将结果与最近在文献中获得的其他结果进行了比较。在这些功能中,即$σ_8(z)$,$ s_8(z)$和$γ(z)$,我们是否发现与标准宇宙学预测有很大的偏差。

Measurements of the cosmological parameter $S_8$ provided by cosmic microwave background and large scale structure data reveal some tension between them, suggesting that the clustering features of matter in these early and late cosmological tracers could be different. In this work, we use a supervised learning method designed to solve Bayesian approach to regression, known as Gaussian Processes regression, to quantify the cosmic evolution of $S_8$ up to $z \sim 1.5$. For this, we propose a novel approach to find firstly the evolution of the function $σ_8(z)$, then we find the function $S_8(z)$. As a sub-product we obtain a minimal cosmological model-dependent $σ_8(z=0)$ and $S_8(z=0)$ estimates. We select independent data measurements of the growth rate $f(z)$ and of $[fσ_8](z)$ according to criteria of non-correlated data, then we perform the Gaussian reconstruction of these data sets to obtain the cosmic evolution of $σ_8(z)$, $S_8(z)$, and the growth index $γ(z)$. Our statistical analyses show that $S_8(z)$ is compatible with Planck $Λ$CDM cosmology; when evaluated at the present time we find $σ_8(z=0) = 0.766 \pm 0.116$ and $S_8(z=0) = 0.732 \pm 0.115$. Applying our methodology to the growth index, we find $γ(z=0) = 0.465 \pm 0.140$. Moreover, we compare our results with others recently obtained in the literature. In none of these functions, i.e. $σ_8(z)$, $S_8(z)$, and $γ(z)$, do we find significant deviations from the standard cosmology predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源