论文标题
在碳纳米管和石墨烯涂层电线中纠缠的两播产生
Entangled two-plasmon generation in carbon nanotubes and graphene coated wires
论文作者
论文摘要
我们研究了单壁碳纳米管(SWCNT)和石墨烯涂层电线(GCWS)附近的量子发射极的两种量子自发衰变。由于可调引导的等离子和量子发射极之间的强耦合,我们证明了SWCNT中有效的,增强的两样式纠缠状态的产生。我们预测,两样式的排放速率比自由空间高十二个数量级以上,平均寿命为数十个纳米秒。鉴于其较低的维度,与扩展石墨烯相比,这些系统可能更有效地在生成和检测纠缠的等离子。确实,我们在GCW中实现了可调的发射光谱,在该GCW中,急剧的共振精确发生在等离子的最小激发频率下。我们表明,通过更改GCW介电芯的材料特性,可以定制发射纠缠的等离子的主要模式和频率,同时保持衰减率比自由空间高10个数量级。通过在存在低维碳基纳米材料的情况下揭示两样式自发发射过程的独特性能,我们的发现为新型材料平台提供了芯片量子信息技术应用的基础。
We investigate the two-plasmon spontaneous decay of a quantum emitter near single-walled carbon nanotubes (SWCNT) and graphene-coated wires (GCWs). We demonstrate efficient, enhanced generation of two-plasmon entangled states in SWCNTs due to the strong coupling between tunable guided plasmons and the quantum emitter. We predict two-plasmon emission rates more than twelve orders of magnitude higher than in free-space, with average lifetimes of a few dozens of nanoseconds. Given their low dimensionality, these systems could be more efficient for generating and detecting entangled plasmons in comparison to extended graphene. Indeed, we achieve tunable spectrum of emission in GCWs, where sharp resonances occur precisely at the plasmons' minimum excitation frequencies. We show that, by changing the material properties of the GCW's dielectric core, one could tailor the dominant modes and frequencies of the emitted entangled plasmons while keeping the decay rate ten orders of magnitude higher than in free-space. By unveiling the unique properties of two-plasmon spontaneous emission processes in the presence of low dimensional carbon-based nanomaterials, our findings set the basis for a novel material platform with applications to on-chip quantum information technologies.