论文标题
在任意维度的广义标量张量理论中的黑洞的剪切粘度
Shear viscosity from black holes in generalized scalar-tensor theories in arbitrary dimensions
论文作者
论文摘要
在较高的维度中,我们研究退化级 - 量表量调节的理论,并得出类似Schwarzschild抗DE保姆黑洞的溶液。我们在瓦尔德形式主义之后计算其热力学数量,满足热力学的第一定律和更高的尺寸Smarr关系。通过适当选择类似太空的杀戮载体的构建noether电荷,我们获得了非重力二元场理论的剪切粘度,其中侵犯了Kovtun-Son-Son-Starinets绑定的合适选择。这些结果通过计算Kubo形式主义后的绿色功能来证实。
In higher dimensions, we study Degenerate-Higher-Order-Scalar-Tensor theories and we derive solutions that resemble the Schwarzschild Anti-de Sitter black holes. We compute their thermodynamic quantities following the Wald formalism, satisfying the First Law of Thermodynamics and a higher dimensional Smarr relation. Constructing a Noether charge with a suitable choice of a space-like Killing vector, we obtain the shear viscosity of the non-gravitational dual field theory, where for a suitable choice of the couplings functions, the Kovtun-Son-Starinets bound is violated. These results are corroborated by the calculation of the Green's functions following the Kubo formalism.