论文标题

高阶levin-feinleib定理

A higher order Levin-Feinleib theorem

论文作者

Ramare, Olivier, Sedunova, Alisa, Sharma, Ritika

论文摘要

如果仅限于某些非负乘法功能,例如F,在数量上限制并消失在非平方整数上时,我们的结果为我们提供了$ \ sum_ {n \ le x} f(n \ le x} f(n)/n $,带有错误项$ o((\ log x)因为我们有$ \ sum_ {p \ le q} f(p)(\ log p)/p =κ\ log q+η+o(1/(\ log2q)^h)$(\ log2q)^h)$ for非负$κ$和一些非负整数$ h $。该方法概括了1967年的Levin和Fainleib的诉求,并使用微分方程。

When restricted to some non-negative multiplicative function, say f, bounded on primes and that vanishes on non square-free integers, our result provides us with an asymptotic for $\sum_{n \le X}f(n)/n$ with error term $O((\log X)^{κ-h-1+\varepsilon})$ (for any positive $\varepsilon>0$) as soon as we have $\sum_{p\le Q}f(p)(\log p)/p=κ\log Q+η+O(1/(\log2Q)^h)$ for a non-negative $κ$ and some non-negative integer $h$. The method generalizes the 1967-approach of Levin and Fainleib and uses a differential equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源