论文标题
通过善意-EHP序列的同型球体的生长
Growth of homotopy groups of spheres via the Goodwillie-EHP Sequence
论文作者
论文摘要
我们以稳定茎中$ 2 $ torsion的量为2美元的$ 2 $ tors,绑定了一个球体的同型组的体积,从而提供了伯克伦德和Senger的结果(arxiv:arxiv:2203.00670)的结果。在$ 2^k $ - excisive近似值时,通过“将稳定的答案乘以$ k $的多项式乘以稳定的答案。主要工具是Behrens的Goodwillie-EHP长序列。
We bound the volume of the homotopy groups of the 2-local Goodwillie approximations of a sphere in terms of the amount of $2$-torsion in the stable stems, providing a Goodwillie-theoretic refinement of a result of Burklund and Senger (arXiv:2203.00670). At the $2^k$-excisive approximation, this bound is obtained by `multiplying the stable answer by a polynomial of degree $k$'. The main tool is Behrens' Goodwillie-EHP Long Exact Sequence.