论文标题
超越Planck XIII。强度前景采样,归化和先验
BeyondPlanck XIII. Intensity foreground sampling, degeneracies, and priors
论文作者
论文摘要
我们介绍了超越Planck分析框架中使用的强度前景算法和模型。 BeyondPlanck分析旨在将组件分离和仪器参数采样集成在全球框架中,从而在$ Planck $低频仪器(LFI)数据分析中完成端到端误差传播。考虑到BeyondPlanck分析的范围,组件分离过程中包含了有限的数据集,从而导致前景参数变性。为了正确限制银河前景参数,我们通过添加一套算法技术来改进以前的$ \ texttt {Commander} $组件分离实现。这些算法旨在提高弱约束后分布的稳定性和计算效率。这些是:1)基于Miramare的想法的关节前景频谱参数和振幅采样; 2)基于组件的单极测定; 3)关节光谱参数和单极采样; 4)在组件幅度图中应用信息空间先验。我们发现,使用电流超出Planck数据集具有显着信噪比的唯一光谱参数是异常微波发射组件的峰值频率,我们发现$ν_ {\ Mathrm {p}} = 25.3 \ pm0.5 $ ghz;所有其他都必须通过外部先验来限制。未来的工作将旨在将更多的数据集整合到基于地图和时间顺序的该分析中,从而逐渐以受控的方式消除了当前观察到的退化性,相对于工具性系统效应和天体物理脱离了。发生这种情况时,需要将当前工作中采用的简单面向LFI的数据模型推广,以说明富裕的天体物理模型和其他仪器效应。
We present the intensity foreground algorithms and model employed within the BeyondPlanck analysis framework. The BeyondPlanck analysis is aimed at integrating component separation and instrumental parameter sampling within a global framework, leading to complete end-to-end error propagation in the $Planck$ Low Frequency Instrument (LFI) data analysis. Given the scope of the BeyondPlanck analysis, a limited set of data is included in the component separation process, leading to foreground parameter degeneracies. In order to properly constrain the Galactic foreground parameters, we improve upon the previous $\texttt{Commander}$ component separation implementation by adding a suite of algorithmic techniques. These algorithms are designed to improve the stability and computational efficiency for weakly constrained posterior distributions. These are: 1) joint foreground spectral parameter and amplitude sampling, building on ideas from Miramare; 2) component-based monopole determination; 3) joint spectral parameter and monopole sampling; and 4) application of informative spatial priors for component amplitude maps. We find that the only spectral parameter with a significant signal-to-noise ratio using the current BeyondPlanck data set is the peak frequency of the anomalous microwave emission component, for which we find $ν_{\mathrm{p}}=25.3\pm0.5$ GHz; all others must be constrained through external priors. Future works will be aimed at integrating many more data sets into this analysis, both map and time-ordered based, thereby gradually eliminating the currently observed degeneracies in a controlled manner with respect to both instrumental systematic effects and astrophysical degeneracies. When this happens, the simple LFI-oriented data model employed in the current work will need to be generalized to account for both a richer astrophysical model and additional instrumental effects.