论文标题
BPS在Seifert歧管中打结的不变性
BPS Invariants for a Knot in Seifert Manifolds
论文作者
论文摘要
当量规组为$ su(n)$时,我们计算Seifert歧管中的一个结的同源块。我们通过分析延续Chern-Simons级别从Wilson Loop操作员的期望值中获得具有给定代表的同源块。我们还获得了具有分析性持续水平的同源块,并在Seifert Integer同源性领域中为结的表示。
We calculate homological blocks for a knot in Seifert manifolds when the gauge group is $SU(N)$. We obtain the homological blocks with a given representation of the gauge group from the expectation value of the Wilson loop operator by analytically continuing the Chern-Simons level. We also obtain homological blocks with the analytically continued level and representation for a knot in the Seifert integer homology spheres.