论文标题

关于适应用于系统识别的复发神经网络

On the adaptation of recurrent neural networks for system identification

论文作者

Forgione, Marco, Muni, Aneri, Piga, Dario, Gallieri, Marco

论文摘要

本文提出了一种转移学习方法,该方法可以快速有效地适应动态系统的复发性神经网络(RNN)模型。首先使用可用测量结果确定标称RNN模型。然后假定系统动力学会发生变化,从而导致扰动系统上名义模型性能的不可接受的降解。为了应对不匹配,该模型的增强校正项会增强,该添加校正术语对新的动态制度的新数据进行了训练。校正项是通过雅各布特征回归(JFR)方法来学到的,该方法根据模型的雅各布跨度相对于其标称参数定义的特征。还提出了该方法的非参数视图,该方法将最新的高斯过程(GP)用神经切线内核(NTK-GP)扩展到RNN病例(RNTK-GP)。对于非常大的网络,或者只有很少的数据点可用时,这可能更有效。描述了用于快速有效计算校正项的实现方面,以及RNN模型的初始状态估计。数值示例显示了在存在显着系统变化的情况下所提出的方法的有效性。

This paper presents a transfer learning approach which enables fast and efficient adaptation of Recurrent Neural Network (RNN) models of dynamical systems. A nominal RNN model is first identified using available measurements. The system dynamics are then assumed to change, leading to an unacceptable degradation of the nominal model performance on the perturbed system. To cope with the mismatch, the model is augmented with an additive correction term trained on fresh data from the new dynamic regime. The correction term is learned through a Jacobian Feature Regression (JFR) method defined in terms of the features spanned by the model's Jacobian with respect to its nominal parameters. A non-parametric view of the approach is also proposed, which extends recent work on Gaussian Process (GP) with Neural Tangent Kernel (NTK-GP) to the RNN case (RNTK-GP). This can be more efficient for very large networks or when only few data points are available. Implementation aspects for fast and efficient computation of the correction term, as well as the initial state estimation for the RNN model are described. Numerical examples show the effectiveness of the proposed methodology in presence of significant system variations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源