论文标题
O(3)-Sigma模型中BPS解决方案的差异配置复杂性和相变
Differential configurational complexity and phase transitions of the BPS solutions in the O(3)-sigma model
论文作者
论文摘要
使用球形对称的ANSATZ,我们表明具有对数电势的Chern-Simons O(3)sigma模型可以接收拓扑解。该结果非常有趣,因为高森型对数潜力仅在$(1+1)$ d模型中预测拓扑解决方案。为了实现我们的目标,使用了Bogomol'nyi-Prasad-Sommerfield(BPS)方法,以使能量饱和并获得BPS方程。接下来,我们通过数值方法显示的是拓扑字段的图形结果,以及产生由$φ_{flux} = - \ Mathcal {q}/κ$和涡流结构的能量密度的磁场行为。另一方面,我们通过考虑涡流的能量密度来评估拓扑结构的差异构型复杂性(DCC)的度量。该分析很重要,因为它将为我们提供有关与局部结构相关的可能相变的信息,并且表明我们的模型仅支持一阶段的过渡。
Using a spherically symmetric ansatz, we show that the Chern-Simons O(3)-sigma model with a logarithmic potential admits topological solutions. This result is quite interesting since the Gausson-type logarithmic potential only predicted topological solutions in $(1+1)$D models. To accomplish our goal, the Bogomol'nyi-Prasad-Sommerfield (BPS) method is used, to saturate the energy and obtain the BPS equations. Next, we show by the numerical method is the graphical results of the topological fields, as well as, the magnetic field behavior that generates a flux given by $Φ_{flux}=-\mathcal{Q}/κ$ and the energy density of the structures of vortices. On the other hand, we evaluate the measure of the differential configurational complexity (DCC) of the topological structures, by considering the energy density of the vortex. This analysis is important because it will provide us with information about the possible phase transitions associated with the localized structures and it shows that our model only supports the one-phase transition.