论文标题

量子相二维材料

Quantum-phase two-dimensional materials

论文作者

Di Giulio, Valerio, Gonçalves, P. A. D., de Abajo, F. Javier García

论文摘要

电子带结构的修改以及随后对电气,光学和热材料特性的调整是工程学和对固态系统的基本理解的中心主题。在这种情况下,原子上薄的材料提供了一个吸引人的平台,因为它们非常容易受到电气和磁门的影响,以及堆叠式配置中的层间杂交,提供了自定义和主动调节其响应功能的手段。在这里,我们引入了一种截然不同的材料工程方法,该方法依赖于将电气中性结构放置在其附近时的二维材料体验中电子的自我相互作用。使用严格的理论方法,我们表明,半导体原子单层中的电子获得的量子阶段是由于存在的图像潜在引起的量子阶段,该图像可能由邻近的周期性进行带丝带引起的图像潜力,从而在光学,电气和热能中产生杂物的光学特性,从而产生了相互作用,从而产生了相互作用的构图,从而产生了强烈的修改。金属 - 绝缘体过渡。除了其基本兴趣之外,基于非接触式邻近结构引起的量子相的材料工程代表了一种破坏性的方法,用于定制原子层的特性,以在纳米电视中应用。

The modification of electronic band structures and the subsequent tuning of electrical, optical, and thermal material properties is a central theme in the engineering and fundamental understanding of solid-state systems. In this scenario, atomically thin materials offer an appealing platform because they are extremely susceptible to electric and magnetic gating, as well as to interlayer hybridization in stacked configurations, providing the means to customize and actively modulate their response functions. Here, we introduce a radically different approach to material engineering relying on the self-interaction that electrons in a two-dimensional material experience when an electrically neutral structure is placed in its vicinity. Employing rigorous theoretical methods, we show that electrons in a semiconductor atomic monolayer acquire a quantum phase resulting from the image potential induced by the presence of a neighboring periodic array of conducting ribbons, which in turn produces strong modifications in the optical, electrical, and thermal properties of the monolayer, specifically giving rise to the emergence of interband optical absorption, plasmon hybridization, and metal-insulator transitions. Beyond its fundamental interest, material engineering based on the quantum phase induced by noncontact neighboring structures represents a disruptive approach to tailor the properties of atomic layers for application in nanodevices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源