论文标题

使用元元学习和原型损失的元学习综合语音检测

Synthetic speech detection using meta-learning with prototypical loss

论文作者

Pal, Monisankha, Raikar, Aditya, Panda, Ashish, Kopparapu, Sunil Kumar

论文摘要

关于对策的言语欺骗的最新著作仍然缺乏普遍的欺骗攻击的能力。这是ASVSPOOF挑战的关键问题之一,尤其是随着多样化和高质量欺骗算法的快速发展。在这项工作中,我们通过在元学习范式下提出原型损失来解决欺骗检测的普遍性,以模仿训练期间看不见的测试情况。具有度量学习目标的原型损失可以直接学习嵌入空间,并成为盛行分类损失函数的强大替代方案。我们提出了一种基于挤压灭绝残差网络(SE-RESNET)结构的反企业系统,具有典型的损失。我们证明,没有任何数据增强的提议的单个系统可以在ASVSPOOF 2019逻辑访问(LA)任务上实现竞争性能。此外,带有数据增强的提议系统在LA任务的进度和评估阶段都优于ASVSPOOF 2021挑战最佳基线。在ASVSPOOF 2019和2021评估中,我们的Min-TDCF分别与最佳基线相比,Min-TDCF的相对相对68.4%和3.6%。

Recent works on speech spoofing countermeasures still lack generalization ability to unseen spoofing attacks. This is one of the key issues of ASVspoof challenges especially with the rapid development of diverse and high-quality spoofing algorithms. In this work, we address the generalizability of spoofing detection by proposing prototypical loss under the meta-learning paradigm to mimic the unseen test scenario during training. Prototypical loss with metric-learning objectives can learn the embedding space directly and emerges as a strong alternative to prevailing classification loss functions. We propose an anti-spoofing system based on squeeze-excitation Residual network (SE-ResNet) architecture with prototypical loss. We demonstrate that the proposed single system without any data augmentation can achieve competitive performance to the recent best anti-spoofing systems on ASVspoof 2019 logical access (LA) task. Furthermore, the proposed system with data augmentation outperforms the ASVspoof 2021 challenge best baseline both in the progress and evaluation phase of the LA task. On ASVspoof 2019 and 2021 evaluation set LA scenario, we attain a relative 68.4% and 3.6% improvement in min-tDCF compared to the challenge best baselines, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源