论文标题
甲烷中质子电离效率的测量
Measurements of the ionization efficiency of protons in methane
论文作者
论文摘要
与相同动能的电子相比,通过核反应电离电离原子的原子释放的能量量似乎是“淬火”的。电子和核之间的电离行为不同,用电离淬灭因子(IQF)描述,并且在直接暗物质搜索中起着至关重要的作用。对于低动能(低于$ 50〜 \ MATHRM {KEV} $),IQF测量值与用于理论预测和仿真的常见模型显着偏离。我们报告了质子IQF的测量值,质子是搜索质量约1 GEV的暗物质候选者的适当目标,动能能量在$ 2〜 \ Mathrm {keV} $之间,$ 13〜 \ MATHRM {KEV} $ in $ 100〜 \ MATHRM {MATHRM {MBAR} $ {MBAR} $ {MBAR} $ of Methane $ of Methane} $。我们使用COMIMAC设施来产生活性体积中受控动能的核和电子电子的运动,以及News-G SPC来测量沉积的能量。 Comimac电子被用作用7个能量点校准检测器的参考。对系统效应的详细研究导致最终结果由$ \ mathrm {iqf}〜(e_k)= e_k^α〜/〜(β+ e_k^α)$,$α= 0.70 \ pm0.08 $和$β= 1.32 \ pm0.17 $。与其他天然气混合物中的一些先前的作品一致,我们测量的电离能量比SRIM模拟所预测的要少,差额达到$ 33 \%$,$ 2〜 \ MATHRM {KEV} $
The amount of energy released by a nuclear recoil ionizing the atoms of the active volume of detection appears "quenched" compared to an electron of the same kinetic energy. This different behavior in ionization between electrons and nuclei is described by the Ionization Quenching Factor (IQF) and it plays a crucial role in direct dark matter searches. For low kinetic energies (below $50~\mathrm{keV}$), IQF measurements deviate significantly from common models used for theoretical predictions and simulations. We report measurements of the IQF for proton, an appropriate target for searches of Dark Matter candidates with a mass of approximately 1 GeV, with kinetic energies in between $2~\mathrm{keV}$ and $13~\mathrm{keV}$ in $100~\mathrm{mbar}$ of methane. We used the Comimac facility in order to produce the motion of nuclei and electrons of controlled kinetic energy in the active volume, and a NEWS-G SPC to measure the deposited energy. The Comimac electrons are used as reference to calibrate the detector with 7 energy points. A detailed study of systematic effects led to the final results well fitted by $\mathrm{IQF}~(E_K)= E_K^α~/~(β+ E_K^α)$ with $α=0.70\pm0.08$ and $β= 1.32\pm0.17$. In agreement with some previous works in other gas mixtures, we measured less ionization energy than predicted from SRIM simulations, the difference reaching $33\%$ at $2~\mathrm{keV}$