论文标题
2-Cartesian纤维ii:$ \ infty $ - bicategories的Grothendieck构造
2-Cartesian fibrations II: A Grothendieck construction for $\infty$-bicategories
论文作者
论文摘要
在这项工作中,我们通过在此环境中提供了绿色的构造来结束对纤维$ \ infty $ bicateGorie的研究。给定缩放的简单集合$ s $(不必是纤维),我们构建了Lurie的直截了当的不良邻接的2类分类版,从而提供了$ \ infty $ bicate-bicategory的2-核糖纤维纤维之间的等价性\ to \ to \ mathbb {b} \ mathbf {\!} \ operatAtorName {icat} _ \ infty $,$ \ infty $ -bicateGory中的$ \ infty $ -bicateGories中的值。在基础是2类别的情况下,我们提供了一种相对的神经构建,并用它来证明与现有的生物grothendieck构建体进行比较。
In this work, we conclude our study of fibred $\infty$-bicategories by providing a Grothendieck construction in this setting. Given a scaled simplicial set $S$ (which need not be fibrant) we construct a 2-categorical version of Lurie's straightening-unstraightening adjunction, thereby furnishing an equivalence between the $\infty$-bicategory of 2-Cartesian fibrations over $S$ and the $\infty$-bicategory of contravariant functors $S^{\operatorname{op}} \to \mathbb{B}\mathbf{\!}\operatorname{icat}_\infty$ with values in the $\infty$-bicategory of $\infty$-bicategories. We provide a relative nerve construction in the case where the base is a 2-category, and use this to prove a comparison to existing bicategorical Grothendieck constructions.