论文标题

量子傅里叶光学元件的基本原理

Fundamentals of Quantum Fourier Optics

论文作者

Rezai, Mohammad, Salehi, Jawad A.

论文摘要

全量子信号处理技术是大多数基于信息的量子技术成功发展的核心。本文开发了连贯而全面的方法和数学模型,以完全量子术语描述傅立叶光学信号处理。我们通过引入光子的空间二维量子状态来开始本文,该论文与其波前有关,并且可以作为二维创建算子表达。然后,通过将傅立叶光学处理设备分解为其关键组件,我们努力获取二维创建操作员的量子统一转换或输入/输出量子关系。随后,我们利用上述结果来开发和获得一些基本傅立叶光学设备的量子类似,例如通过4F处理系统和带有周期学生的量子4F处理系统的量子卷积。此外,由于在各种光学通信和光学科学领域的光脉冲形状的重要性和广泛使用,我们还以完整的量子项呈现一个类似的系统,即使用8F处理系统进行量子脉冲塑造。最后,我们将结果应用于光量子状态的两个极端例子。一个基于上述每个光学系统的单光子数(Fock)状态基于相干(Glauber)状态。我们认为,本文开发的方案和数学模型会影响量子光学信号处理,量子全息,量子通信,量子雷达和多输入/多输出天线的许多领域,以及在量子计算和量子机器学习算法中的更多应用。

All-quantum signal processing techniques are at the core of the successful advancement of most information-based quantum technologies. This paper develops coherent and comprehensive methodologies and mathematical models to describe Fourier optical signal processing in full quantum terms for any input quantum state of light. We begin this paper by introducing a spatially two-dimensional quantum state of a photon, associated with its wavefront and expressible as a two-dimensional creation operator. Then, by breaking down the Fourier optical processing apparatus into its key components, we strive to acquire the quantum unitary transformation or the input/output quantum relation of the two-dimensional creation operators. Subsequently, we take advantage of the above results to develop and obtain the quantum analogous of a few essential Fourier optical apparatus, such as quantum convolution via a 4f-processing system and a quantum 4f-processing system with periodic pupils. Moreover, due to the importance and widespread use of optical pulse shaping in various optical communications and optical sciences fields, we also present an analogous system in full quantum terms, namely quantum pulse shaping with an 8f-processing system. Finally, we apply our results to two extreme examples of the quantum state of light. One is based on a coherent (Glauber) state and the other on a single-photon number (Fock) state for each of the above optical systems. We believe the schemes and mathematical models developed in this paper can impact many areas of quantum optical signal processing, quantum holography, quantum communications, quantum radars and multiple-input/multiple-output antennas, and many more applications in quantum computations and quantum machine learning algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源