论文标题
替代神经网络模型,用于敏感性分析和光学镜头组装中机械行为的不确定性定量
Surrogate Neural Network Model for Sensitivity Analysis and Uncertainty Quantification of the Mechanical Behavior in the Optical Lens-Barrel Assembly
论文作者
论文摘要
替代神经网络的模型最近在各种科学和工程应用中进行了培训和使用,在各种科学和工程应用中,目标功能的评估数量受执行时间的限制。在手机摄像机系统中,各种错误,例如镜头桶和镜头镜头界面的干扰以及轴向,径向和倾斜的未对准,以随机方式积累和更改镜头的轮廓,最终会改变光聚焦特性。通过干扰拟合引起的透镜的随机机械行为的非线性有限元分析用于高性能计算(HPC),以生成足够的训练和测试数据,以进行随后的深度学习。一旦经过适当的训练和验证,替代神经网络模型就可以准确,几乎可以立即评估提供最终镜头概况的数百万功能评估。通过人工智能增强的这种计算模型使我们能够有效地执行蒙特卡洛分析,以实现对各种干扰的最终镜头概况的敏感性和不确定性量化。它可以与光学分析进一步结合,以执行射线追踪并分析透镜模块的焦点特性。此外,它可以为许多类似的按拟合组装过程提供优化公差设计和智能组件的宝贵工具。
Surrogate neural network-based models have been lately trained and used in a variety of science and engineering applications where the number of evaluations of a target function is limited by execution time. In cell phone camera systems, various errors, such as interferences at the lens-barrel and lens-lens interfaces and axial, radial, and tilt misalignments, accumulate and alter profile of the lenses in a stochastic manner which ultimately changes optical focusing properties. Nonlinear finite element analysis of the stochastic mechanical behavior of lenses due to the interference fits is used on high-performance computing (HPC) to generate sufficient training and testing data for subsequent deep learning. Once properly trained and validated, the surrogate neural network model enabled accurate and almost instant evaluations of millions of function evaluations providing the final lens profiles. This computational model, enhanced by artificial intelligence, enabled us to efficiently perform Monte-Carlo analysis for sensitivity and uncertainty quantification of the final lens profile to various interferences. It can be further coupled with an optical analysis to perform ray tracing and analyze the focal properties of the lens module. Moreover, it can provide a valuable tool for optimizing tolerance design and intelligent components matching for many similar press-fit assembly processes.