论文标题

预测二维二氧化硅眼镜的故障

Predicting the failure of two-dimensional silica glasses

论文作者

Font-Clos, Francesc, Zanchi, Marco, Hiemer, Stefan, Bonfanti, Silvia, Guerra, Roberto, Zaiser, Michael, Zapperi, Stefano

论文摘要

能够基于结构信息预测材料的失败是一个基本问题,具有监视设备和组件的巨大实际和工业相关性。由于深度学习的最新进展,即使对于牢固的固体,准确的失败预测也变得可能成为可能,但是该过程中使用的参数数量的数量使得对结果的物理解释产生了不可能的物理解释。在这里,我们解决了这个问题,并使用机器学习方法来预测模拟二维二氧化硅眼镜的失败,从其最初的未完整结构中预测。然后,我们利用梯度加权的类激活映射(GRAD-CAM)来构建与预测相关的注意图,我们证明这些地图在拓扑缺陷和局部势能方面可以与物理解释相amp。我们表明,我们的预测可以转移到与训练中使用的样品不同的样品以及实验图像的样品。我们的策略说明了如何通过数值模拟结果训练的人工神经网络可以为实验测量结构的行为提供可解释的预测。

Being able to predict the failure of materials based on structural information is a fundamental issue with enormous practical and industrial relevance for the monitoring of devices and components. Thanks to recent advances in deep learning, accurate failure predictions are becoming possible even for strongly disordered solids, but the sheer number of parameters used in the process renders a physical interpretation of the results impossible. Here we address this issue and use machine learning methods to predict the failure of simulated two dimensional silica glasses from their initial undeformed structure. We then exploit Gradient-weighted Class Activation Mapping (Grad-CAM) to build attention maps associated with the predictions, and we demonstrate that these maps are amenable to physical interpretation in terms of topological defects and local potential energies. We show that our predictions can be transferred to samples with different shape or size than those used in training, as well as to experimental images. Our strategy illustrates how artificial neural networks trained with numerical simulation results can provide interpretable predictions of the behavior of experimentally measured structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源