论文标题
图像脱毛问题:矩阵,小波和多级方法
The Image Deblurring Problem: Matrices, Wavelets, and Multilevel Methods
论文作者
论文摘要
图像脱毛问题包括从模糊和噪声污染可用数据中重建图像。在此AMS通知文章中,我们概述了一些用于解决此问题的众所周知的数值线性代数技术。特别是,我们首先要仔细描述如何表示图像,模糊图像和建模不同种类的噪声的过程。然后,我们提出正规化方法,例如Tikhonov(在标准和一般形式),总变化以及具有稀疏和边缘保存属性的其他变化。此外,我们简要概述了模糊操作员的一些主要矩阵结构,并最终确定保留此类结构的多级方法。数值示例用于说明所描述的技术。
The image deblurring problem consists of reconstructing images from blur and noise contaminated available data. In this AMS Notices article, we provide an overview of some well known numerical linear algebra techniques that are use for solving this problem. In particular, we start by carefully describing how to represent images, the process of blurring an image and modeling different kind of added noise. Then, we present regularization methods such as Tikhonov (on the standard and general form), Total Variation and other variations with sparse and edge preserving properties. Additionally, we briefly overview some of the main matrix structures for the blurring operator and finalize presenting multilevel methods that preserve such structures. Numerical examples are used to illustrate the techniques described.