论文标题

使用循环生成对抗网络从光杀解物学产生的新型血压波形重建

Novel Blood Pressure Waveform Reconstruction from Photoplethysmography using Cycle Generative Adversarial Networks

论文作者

Mehrabadi, Milad Asgari, Aqajari, Seyed Amir Hossein, Zargari, Amir Hosein Afandizadeh, Dutt, Nikil, Rahmani, Amir M.

论文摘要

连续监测血压(BP)可以帮助个人管理其慢性疾病,例如高血压,需要在自由生活条件下进行非侵入性测量方法。最近使用不同的机器和深度学习方法来进行非侵入性估计BP的方法融合光插图仪(PPG)和心电图(ECG)信号;但是,它们无法重建完整的信号,从而导致模型较少。在本文中,我们提出了一种基于循环生成的对抗网络(CycleGAN)方法,以从干净的PPG信号中提取称为卧床血压(ABP)的BP信号。我们的方法使用一个循环生成的对抗网络,该网络扩展了域翻译的gan架构,并且在BP估计中,最大的最高范围高于最先进的方法。

Continuous monitoring of blood pressure (BP)can help individuals manage their chronic diseases such as hypertension, requiring non-invasive measurement methods in free-living conditions. Recent approaches fuse Photoplethysmograph (PPG) and electrocardiographic (ECG) signals using different machine and deep learning approaches to non-invasively estimate BP; however, they fail to reconstruct the complete signal, leading to less accurate models. In this paper, we propose a cycle generative adversarial network (CycleGAN) based approach to extract a BP signal known as ambulatory blood pressure (ABP) from a clean PPG signal. Our approach uses a cycle generative adversarial network that extends theGAN architecture for domain translation, and outperforms state-of-the-art approaches by up to 2x in BP estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源