论文标题

无校准平行MR成像的通用生成建模

Universal Generative Modeling for Calibration-free Parallel Mr Imaging

论文作者

Zhu, Wanqing, Guan, Bing, Wang, Shanshan, Zhang, Minghui, Liu, Qiegen

论文摘要

压缩传感和并行成像(CS-PI)的整合提供了一种可加速MRI采集的强大机制。但是,大多数此类策略都需要明确形成线圈灵敏度概况或交叉圈相关操作员,因此,重建对应于解决具有挑战性的双线性优化问题。在这项工作中,我们提出了一个无监督的深度学习框架,用于无校准平行的MRI,这是用于并行成像(UGM-PI)的通用生成建模。更确切地说,我们利用统一框架中的小波变换和适应性迭代策略的优点。我们通过形成小波张量作为训练阶段的网络输入来训练强大的噪声条件得分网络。物理幻影和体内数据集的实验结果暗示,所提出的方法是可比的,甚至与最新的CS-PI重建方法相当。

The integration of compressed sensing and parallel imaging (CS-PI) provides a robust mechanism for accelerating MRI acquisitions. However, most such strategies require the explicit formation of either coil sensitivity profiles or a cross-coil correlation operator, and as a result reconstruction corresponds to solving a challenging bilinear optimization problem. In this work, we present an unsupervised deep learning framework for calibration-free parallel MRI, coined universal generative modeling for parallel imaging (UGM-PI). More precisely, we make use of the merits of both wavelet transform and the adaptive iteration strategy in a unified framework. We train a powerful noise conditional score network by forming wavelet tensor as the network input at the training phase. Experimental results on both physical phantom and in vivo datasets implied that the proposed method is comparable and even superior to state-of-the-art CS-PI reconstruction approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源