论文标题

基于利基的进化多样性优化了旅行销售人员问题

Niching-based Evolutionary Diversity Optimization for the Traveling Salesperson Problem

论文作者

Do, Anh Viet, Guo, Mingyu, Neumann, Aneta, Neumann, Frank

论文摘要

在这项工作中,我们考虑了找到一组旅行销售人员问题(TSP)实例的问题,同时满足给定的成本限制。这项研究旨在调查应用滋养来最大化多样性而不是简单地维护它的有效性。为此,我们介绍了一种2阶段的方法,其中一种简单的数字模因算法(NMA)衍生自多溶剂TSP的最先进的方法,与基线多样化算法相结合。提出的NMA的最显着特征是使用随机改进优先搜索而不是2-OPT。我们在TSPLIB实例上进行的实验表明,尽管我们的NMA进化的种群倾向于在质量紧密的限制下包含簇,但它们经常占据吸引人的遥远盆地而不是近距离的盆地,从而改善了基线多样性,从而改善了总体多样性。与原始的NMA相比,尽管它很简单,但我们的运行时间较小,在较小的运行时间内发现了更高质量的解决方案。

In this work, we consider the problem of finding a set of tours to a traveling salesperson problem (TSP) instance maximizing diversity, while satisfying a given cost constraint. This study aims to investigate the effectiveness of applying niching to maximize diversity rather than simply maintaining it. To this end, we introduce a 2-stage approach where a simple niching memetic algorithm (NMA), derived from a state-of-the-art for multi-solution TSP, is combined with a baseline diversifying algorithm. The most notable feature of the proposed NMA is the use of randomized improvement-first local search instead of 2-opt. Our experiment on TSPLIB instances shows that while the populations evolved by our NMA tend to contain clusters at tight quality constraints, they frequently occupy distant basins of attraction rather than close-by regions, improving on the baseline diversification in terms of sum-sum diversity. Compared to the original NMA, ours, despite its simplicity, finds more distant solutions of higher quality within less running time, by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源