论文标题
Ehrhart通过色带结构的对称边缘多面体理论
Ehrhart theory of symmetric edge polytopes via ribbon structures
论文作者
论文摘要
使用图的功能区结构,我们将图形的对称边缘多型的解剖构造为单模型的简单。我们的解剖是可撒的,可以通过图理论来解释所得$ h $ vector的元素。这提供了一种计算对称边缘多层的$ H^*$ - 向量的基本方法。
Using a ribbon structure of the graph, we construct a dissection of the symmetric edge polytope of a graph into unimodular simplices. Our dissection is shellable, and one can interpret the elements of the resulting $h$-vector via graph theory. This gives an elementary method for computing the $h^*$-vector of the symmetric edge polytope.