论文标题

汽车MIMO SAR的运动估计和补偿

Motion Estimation and Compensation in Automotive MIMO SAR

论文作者

Manzoni, Marco, Tagliaferri, Dario, Rizzi, Marco, Tebaldini, Stefano, Monti-Guarnieri, Andrea Virgilio, Prati, Claudio Maria, Nicoli, Monica, Russo, Ivan, Duque, Sergi, Mazzucco, Christian, Spagnolini, Umberto

论文摘要

随着自动驾驶汽车的出现,自主驾驶系统将不得不依靠大量的异质传感器来对周围环境进行动态感知。合成孔径雷达(SAR)系统通过利用车辆的自我运动来增加传统大众市场雷达的分辨率,这需要非常准确的轨迹知识,通常与汽车级导航系统不兼容。在这方面,本文介绍了汽车SAR系统中轨迹估计错误的分析,估计和补偿,提出了完整的剩余运动估计和补偿工作流程。我们首先定义采集的几何形状以及多输入多输出(MIMO)SAR系统的基本处理步骤。然后,我们通过分析得出汽车SAR成像中典型运动误差的影响。基于派生模型,该过程是详细的,概述了其实际实施的准则。我们通过通过以前外观配置安装的77 GHz雷达收集的实验数据来展示提出的技术的有效性。

With the advent of self-driving vehicles, autonomous driving systems will have to rely on a vast number of heterogeneous sensors to perform dynamic perception of the surrounding environment. Synthetic Aperture Radar (SAR) systems increase the resolution of conventional mass-market radars by exploiting the vehicle's ego-motion, requiring a very accurate knowledge of the trajectory, usually not compatible with automotive-grade navigation systems. In this regard, this paper deals with the analysis, estimation and compensation of trajectory estimation errors in automotive SAR systems, proposing a complete residual motion estimation and compensation workflow. We start by defining the geometry of the acquisition and the basic processing steps of Multiple-Input Multiple-Output (MIMO) SAR systems. Then, we analytically derive the effects of typical motion errors in automotive SAR imaging. Based on the derived models, the procedure is detailed, outlining the guidelines for its practical implementation. We show the effectiveness of the proposed technique by means of experimental data gathered by a 77 GHz radar mounted in a forward looking configuration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源