论文标题
卷积神经网络中的可解释性,用于建立卫星图像中的损害分类
Interpretability in Convolutional Neural Networks for Building Damage Classification in Satellite Imagery
论文作者
论文摘要
自然灾害会定期破坏世界的城市,山谷和海岸。部署用于评估基础设施损害的精确,有效的计算机制对于传播资源并最大程度地减少生命损失至关重要。使用包含标记为灾前和灾后卫星图像的数据集,我们采用基于机器学习的遥感方法并训练多个卷积神经网络(CNN),以每个建造的基础评估建筑物的损失。我们提出了一种可解释的深度学习的新方法,该方法旨在明确研究培训数据中最有用的信息方式,以创建准确的分类模型。我们还调查了哪些损失功能最能优化这些模型。我们的发现包括,序数交叉熵损失是最佳优化的最佳标准,其中包括造成损坏的灾难类型与前和垃圾后训练训练数据最准确地预测了造成的损害水平。此外,我们通过梯度加权类激活映射(GRAD-CAM)在定性表示图像的定性表示方面取得了进展。我们的研究旨在在人为的气候变化中加剧了持续不断发展的人道主义危机,从而在计算上有助于帮助造成这种持续不断的人道主义危机。
Natural disasters ravage the world's cities, valleys, and shores on a regular basis. Deploying precise and efficient computational mechanisms for assessing infrastructure damage is essential to channel resources and minimize the loss of life. Using a dataset that includes labeled pre- and post- disaster satellite imagery, we take a machine learning-based remote sensing approach and train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis. We present a novel methodology of interpretable deep learning that seeks to explicitly investigate the most useful modalities of information in the training data to create an accurate classification model. We also investigate which loss functions best optimize these models. Our findings include that ordinal-cross entropy loss is the most optimal criterion for optimization to use and that including the type of disaster that caused the damage in combination with pre- and post-disaster training data most accurately predicts the level of damage caused. Further, we make progress in the qualitative representation of which parts of the images that the model is using to predict damage levels, through gradient-weighted class activation mapping (Grad-CAM). Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.