论文标题

流行性人口游戏和进化动态

Epidemic Population Games And Evolutionary Dynamics

论文作者

Martins, Nuno C., Certorio, Jair, La, Richard J.

论文摘要

我们提出了一种系统理论方法,以选择和稳定SIRS流行模型的地方性平衡,其中战略性相互作用的药物的决策决定了传输速率。具体而言,人口的代理商通过一组影响变化水平的传输速率的策略反复修改他们的选择。扣除策略的内在成本后,量化计划者为每种策略提供的激励措施的回报矢量会影响修订过程。进化动力学模型通过将代理商选择转向具有较高回报的策略的利率来捕获修订过程中人口的偏好。我们的主要结果是一种动态的回报机制,可以保证将流行病变量(通过激励人群引起)到具有最小传染性分数的地方性平衡,但要受到成本限制。我们不仅使用Lyapunov功能来建立收敛性,而且还可以在人口传染性部分的峰值上获得(任何时候)上限。

We propose a system theoretic approach to select and stabilize the endemic equilibrium of an SIRS epidemic model in which the decisions of a population of strategically interacting agents determine the transmission rate. Specifically, the population's agents recurrently revise their choices out of a set of strategies that impact to varying levels the transmission rate. A payoff vector quantifying the incentives provided by a planner for each strategy, after deducting the strategies' intrinsic costs, influences the revision process. An evolutionary dynamics model captures the population's preferences in the revision process by specifying as a function of the payoff vector the rates at which the agents' choices flow toward strategies with higher payoffs. Our main result is a dynamic payoff mechanism that is guaranteed to steer the epidemic variables (via incentives to the population) to the endemic equilibrium with the smallest infectious fraction, subject to cost constraints. We use a Lyapunov function not only to establish convergence but also to obtain an (anytime) upper bound for the peak size of the population's infectious portion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源