论文标题

在大型大学校园里网络侧数字联系跟踪

Network-Side Digital Contact Tracing on a Large University Campus

论文作者

Malloy, Matthew L., Hartung, Lance, Wangen, Steve, Banerjee, Suman

论文摘要

我们描述了一项在美国大型公立大学校园进行的研究,该研究显示了网络日志信息在数字接触跟踪和COVID-19案件的预测中的功效。在2021年1月18日至2021年5月7日期间,超过2.16亿个客户访问点的关联已登录了11,000多个无线访问点(APS)。该关联信息用于寻找约30,000个人的潜在联系。使用AP托管算法确定触点,该算法大约在同一时间连接到同一WiFi AP时,它可以进行触点。通过观察与已确认(临床)阳性covid-19测试结果的个体中保留的APS相关性,通过从网络日志数据中推断出的350个阳性Covid-19案例的真实集得到了验证。网络日志数据和AP-colocation的预测值大于10%。更确切地说,一个人与确认阳性COVID-19测试的接触在接下来的7天内测试正阳性的机会大于10 \%(随机选择时的机会为0.79%,相对风险比率为12.6)。此外,计算累积暴露评分,以说明暴露于多个测试阳性的个体。在整个研究期间,累积暴露评分预测正病例的正面病例为16.5%,在指定工作点的检测率为79%。

We describe a study conducted at a large public university campus in the United States which shows the efficacy of network log information for digital contact tracing and prediction of COVID-19 cases. Over the period of January 18, 2021 to May 7, 2021, more than 216 million client-access-point associations were logged across more than 11,000 wireless access points (APs). The association information was used to find potential contacts for approximately 30,000 individuals. Contacts are determined using an AP colocation algorithm, which supposes contact when two individuals connect to the same WiFi AP at approximately the same time. The approach was validated with a truth set of 350 positive COVID-19 cases inferred from the network log data by observing associations with APs in isolation residence halls reserved for individuals with a confirmed (clinical) positive COVID-19 test result. The network log data and AP-colocation have a predictive value of greater than 10%; more precisely, the contacts of an individual with a confirmed positive COVID-19 test have greater than a 10\% chance of testing positive in the following 7 days (compared with a 0.79% chance when chosen at random, a relative risk ratio of 12.6). Moreover, a cumulative exposure score is computed to account for exposure to multiple individuals that test positive. Over the duration of the study, the cumulative exposure score predicts positive cases with a true positive rate of 16.5% and missed detection rate of 79% at a specified operating point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源