论文标题
ktao $ _3 $中铁电不稳定性的超快抑制
Ultrafast Suppression of the Ferroelectric Instability in KTaO$_3$
论文作者
论文摘要
我们使用X射线自由电子激光器来研究高面的超快晶格动力学,遵循初期的铁电钾 - tantalate,\ kto的带隙光激发。 % 我们使用超武器(中央波长266 \,NM和50 fs脉冲持续时间)激光光在整个间隙上进行光振兴电荷载体,并通过记录X射线差异强度在整个多个Brillouin pulses中使用Linac Coohrent Light Soughts(中央&lulse ulse ulse ulse ulse ulse ulse ulse ulse pulse)($ 〜3)($ 〜favels)($ 〜favel),探测超快晶格动力学。 期间)。我们观察到我们得出的弥漫强度的变化与沿$γ$至$ x $的软横向光学和横向声音子分支的硬化有关。使用来自密度功能理论(DFT)的地面和激发态的座原组常数,并假设可以通过时间依赖温度来描述声子种群,我们将准平衡热弥漫性强度拟合到实验性时间依赖性强度。我们获得了随时间延迟的函数,我们获得了瞬时晶格温度和光激发载体的密度。 DFT计算表明,光激发从氧气$ 2P $派生的$π$ - 键入轨道转移到ta $ 5D $衍生的抗抗议轨道,进一步抑制了铁电稳定性并提高了立方体,副结构的稳定性。
We use an x-ray free-electron laser to study the ultrafast lattice dynamics following above band-gap photoexcitation of the incipient ferroelectric potassium-tantalate, \kto. % We use ultrafast near-UV (central wavelength 266\,nm and 50 fs pulse duration) laser light to photoexcite charge carriers across the gap and probe the ultrafast lattice dynamics by recording the x-ray diffuse intensity throughout multiple Brillouin zones using pulses from the Linac Coherent Light Source (LCLS) (central wavelength 1.3\,Å\, and $< 10$~fs pulse duration). We observe changes in the diffuse intensity that we conclude are associated with a hardening of the soft transverse optical and transverse acoustic phonon branches along $Γ$ to $X$ and $Γ$ to $M$. Using ground- and excited-state interatomic force constants from density functional theory (DFT) and assuming the phonon populations can be described by a time-dependent temperature, we fit the quasi-equilibrium thermal diffuse intensity to the experimental time-dependent intensity. We obtain the instantaneous lattice temperature and density of photoexcited charge carriers as a function of time delay. The DFT calculations demonstrate that photoexcitation transfers charge from oxygen $2p$ derived $π$-bonding orbitals to Ta $5d$ derived antibonding orbitals, further suppressing the ferroelectric instability and increasing the stability of the cubic, paraelectric structure.