论文标题
Sobolev空间中各向异性准整形方程的全球解决方案的长期行为
Long-time behavior of global solutions of anisotropic quasi-geostrophic equations in Sobolev space
论文作者
论文摘要
我们在C_B(\ Mathbb {r}^+,H^s(\ Mathbb {r}^2)中,我们研究了各向异性准斑块方程$θ\的全局解决方案的行为。我们证明,随着时间的时间流入$ l^p(\ mathbb {r}^2)$,$ p \ in [2, +\ infty],$此外,我们还证明$ \ lim \ limits_ {
We study the behavior at infinity in time of the global solution of the anisotropic quasi-geostrophic equation $θ\in C_b(\mathbb{R}^+,H^s( \mathbb{R}^2))$. We prove that this solution decays to zero as time goes to infinity in $L^p(\mathbb{R}^2)$, $p\in [2,+\infty],$ moreover, we prove also that $\lim\limits_{t\rightarrow +\infty}\|θ(t)\|_{H^s}=0$.