论文标题

对算法支持的累犯风险评估人类预测的比较用户研究

A Comparative User Study of Human Predictions in Algorithm-Supported Recidivism Risk Assessment

论文作者

Portela, Manuel, Castillo, Carlos, Tolan, Songül, Karimi-Haghighi, Marzieh, Pueyo, Antonio Andres

论文摘要

在本文中,我们研究了使用基于算法的风险评估工具来支持犯罪性养育风险的影响。我们在实验中使用的仪器是Riskeval的机器学习版本(Double Blindreview更改了名称),这是司法部Ofcountry使用的主要风险评估工具(省略以进行双盲审查)。任务是预测从监狱中释放的人是否会在未来两年内犯下新的犯罪,并在未来两年内犯下新的犯罪。除其他变量外,我们还测量了有或没有算法支持的人类预测的准确性。这项用户研究是通过(1)通过众包平台招募的来自不同背景的一般参与者,(2)针对性参与者,他们是数据科学,犯罪学或社会工作和专业人士的学生和从业者,以及WorkwithRiskeval的专业人士。除其他发现外,我们观察到,算法支持系统地导致所有参与者的预测更加准确,但是在有针对性参与者的众包参与者方面,只有统计学意义的收益才能看到。我们还与有针对性研究的参与者共同焦点小组,以解释定量结果,包括用户使用专业能力的人。除其他评论外,专业参与者表明,他们不会在刑事风险评估中使用完全自动化的系统,但确实认为这对于培训,标准化以及对特别困难案件的预测有价值。

In this paper, we study the effects of using an algorithm-based risk assessment instrument to support the prediction of risk of criminalrecidivism. The instrument we use in our experiments is a machine learning version ofRiskEval(name changed for double-blindreview), which is the main risk assessment instrument used by the Justice Department ofCountry(omitted for double-blind review).The task is to predict whether a person who has been released from prison will commit a new crime, leading to re-incarceration,within the next two years. We measure, among other variables, the accuracy of human predictions with and without algorithmicsupport. This user study is done with (1)generalparticipants from diverse backgrounds recruited through a crowdsourcing platform,(2)targetedparticipants who are students and practitioners of data science, criminology, or social work and professionals who workwithRiskEval. Among other findings, we observe that algorithmic support systematically leads to more accurate predictions fromall participants, but that statistically significant gains are only seen in the performance of targeted participants with respect to thatof crowdsourced participants. We also run focus groups with participants of the targeted study to interpret the quantitative results,including people who useRiskEvalin a professional capacity. Among other comments, professional participants indicate that theywould not foresee using a fully-automated system in criminal risk assessment, but do consider it valuable for training, standardization,and to fine-tune or double-check their predictions on particularly difficult cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源