论文标题
平均曲率流的解的旋转对称性来自双锥II
Rotational symmetry of solutions of mean curvature flow coming out of a double cone II
论文作者
论文摘要
我们表明,如果流动在短时间内平滑,则任何最多都必须保持旋转的旋转双锥带有熵的旋转双锥带有熵的任何积分流动,最多都必须保持旋转对称。我们还展示了最多有两个带有熵的双锥体出现的非相似流的存在,并以有限的时间奇异性给出了这样的流动的示例。
We show that any integral Brakke flow coming out of a rotationally symmetric double cone with entropy at most two must stay rotationally symmetric for all time, provided the flow is smooth for a short time. We also show the existence of a non-self-similar flow coming out of a double cone with entropy at most two, and give an example of such a flow with a finite time singularity.