论文标题

连接平衡挖掘的电阻距离

Resistance distance in connected balanced digraphs

论文作者

Balakrishnan, R., Krishnamoorthy, S., So, W.

论文摘要

令$ d =(v,e)$是与顶点套装$ v $和弧集的紧密连接和平衡的挖掘。 (l_ {ij}^{\ Dagger})$是$ l的Moore -Penrose倒数。 。 \ forall \ t = 1 \ \ mathrm {to} \ k。 令$ \ Mathcal {c} $为连接的,平衡的挖掘物的集合,其中每个成员都是$ d_1 \ cup d_1 \ cup d_2 \ cup .... \ cup d_k $的有限结合。单个顶点,对于所有$ i,$ 1 <i \ leq k。$在本文中,我们表明,对于任何digraph $ d $ in $ \ m varycal {c} $,$ r_ {ij}^d \ leq d_ {ij} {ij} {ij}^d \(ij}^d \ \(*)$。这是通过将$ d $的laplacian矩阵划分来确定的。这概括了[3]中的主要结果。作为推论,我们在[3]中推断出结果的更简单证明,即,对于任何有导仙人掌$ d $,不平等(*)的保留。我们的结果为众所周知的有趣猜想提供了肯定的答案(CF:猜想1.3)。

Let $D = (V, E)$ be a strongly connected and balanced digraph with vertex set $V$ and arc set $E.$ The classical distance $d_{ij}^D$ from $i$ to $j$ in $D$ is the length of a shortest directed path from $i$ to $j$ in $D.$ Let $L$ be the Laplacian matrix of $D$ and $ L^{\dagger} = ( l_{ij}^{\dagger} )$ be the Moore-Penrose inverse of $L.$ The resistance distance from $i$ to $j$ is then defined by $r_{ij}^D := l_{ii}^{\dagger } + l_{jj}^{\dagger } - 2 l_{ij}^{\dagger }.$ Let $\{ D_1, D_2, ...., D_k \}$ be a sequence of strongly connected balanced digraphs with $D_i \cap D_j$ having at most one vertex in common for all $i \neq j$ and with $r_{ij}^{D_t} \leq d_{ij}^{D_t} \ \forall \ t = 1 \ \mathrm{to} \ k.$ Let $\mathcal{C}$ be a collection of connected, balanced digraphs, each member of which is a finite union of the form $D_1 \cup D_2 \cup ....\cup D_k$ where each $D_i$ is a connected and balanced digraph with $D_{i} \cap ( D_1 \cup D_2 \cup ....\cup D_{i-1} )$ being a single vertex, for all $i,$ $1 < i \leq k.$ In this paper, we show that for any digraph $D$ in $\mathcal{C}$, $r_{ij}^D \leq d_{ij}^D \ (*)$. This is established by partitioning the Laplacian matrix of $D$. This generalizes the main result in [3]. As a corollary, we deduce a simpler proof of the result in [3], namely, that for any directed cactus $D$, the inequality (*) holds. Our results provide an affirmative answer to a well known interesting conjecture ( cf : Conjecture 1.3 ).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源