论文标题
同时解决$ h_0 $和$σ_8$紧张与深色能量的紧张关系
Simultaneously solving the $H_0$ and $σ_8$ tensions with late dark energy
论文作者
论文摘要
在模型独立的方法中,我们得出了通用条件,即$λ$ CDM扩展历史记录的任何延迟时间都必须满足,才能始终如一地解决$ h_0 $和$σ_8$张力。我们的结果是完全分析的,该方法仅基于以下假设:$λ$ CDM的延迟偏差仍然很小。对于在扩展历史记录和重力耦合常数中编码的暗能量流体的混凝土情况,我们在其状态方程上介绍了必要的条件。解决$ h_0 $和$σ_8$张力的求解要求$ w(z)$如果$ g_ \ text {eff} = g $,则必须越过幻影划分。另一方面,对于$ g_ \ text {eff} = g+Δg(z)$和$ w(z)\ leq -1 $,要求$ \ displayStylele \ frac {Δg(z)} {g} {g}<α(z)<α(z)\ frac {q frac {Δh(z);
In a model independent approach, we derive generic conditions that any late time modification of the $Λ$CDM expansion history must satisfy in order to consistently solve both the $H_0$ and the $σ_8$ tensions. Our results are fully analytical and the method is merely based on the assumption that the late-time deviations from $Λ$CDM remain small. For the concrete case of a dark energy fluid with deviations encoded in the expansion history and the gravitational coupling constant, we present necessary conditions on its equation of state. Solving both the $H_0$ and $σ_8$ tensions requires that $w(z)$ must cross the phantom divide if $G_\text{eff}=G$. On the other hand, for $G_\text{eff}=G+δG(z)$ and $w(z)\leq -1$, it is required that $\displaystyle \frac{δG(z)}{G}<α(z)\frac{δH(z)}{H(z)}<0$ at some redshift $z$.