论文标题
在(1+2)维度中的非最少耦合重力和电磁学模型的模型
A model of non-minimally coupled gravitation and electromagnetism in (1+2) dimensions
论文作者
论文摘要
在Dereli和合作者的早期作品之后,我们研究了一个三维玩具模型,在该模型中,我们通过最通用的$ RF^2 $ type非微型耦合项扩展了拓扑上的重力。这里$ r $表示可能的曲率项,$ f $表示电磁2形。我们得出变分场方程,并在恒定的负曲率空间时间上寻找具有恒定的自偶联电磁场的精确解。德雷利(Dereli)和合作者在研究具有重力 - 电子磁性耦合的模型的精确解决方案的研究中引入了三个维度的自偶联电磁场的概念。我们注意到该模型的参数必须满足这些自动划分解决方案的存在。
Following earlier works of Dereli and collaborators, we study a three dimensional toy model where we extend the topologically massive gravity with electrodynamics by the most general $RF^2$-type non-minimal coupling terms. Here $R$ denotes the possible curvature terms and $F$ denotes the electromagnetic 2-form. We derive the variational field equations and look for exact solutions on constant negative curvature space-times with a constant, self-dual electromagnetic field. The notion of self-dual electromagnetic fields in three dimensions is introduced by Dereli and collaborators in the study of exact solutions of models with gravity-electromagnetism couplings. We note the conditions that the parameters of the model have to satisfy for these self-dual solutions to exist.