论文标题

经过思考的链条提示在大语言模型中引起推理

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

论文作者

Wei, Jason, Wang, Xuezhi, Schuurmans, Dale, Bosma, Maarten, Ichter, Brian, Xia, Fei, Chi, Ed, Le, Quoc, Zhou, Denny

论文摘要

我们探索如何产生一系列思想(一系列中间推理步骤)可以显着提高大型语言模型执行复杂推理的能力。特别是,我们通过一种称为“思想链”提示的简单方法在足够大的语言模型中自然地出现这种推理能力,在这些方法中,其中一些思想示范是作为提示的示例提供的。三种大语模型的实验表明,促使思想链提高了算术,常识和象征性推理任务的性能。经验收益可能会引人注目。例如,在GSM8K基准的数学单词问题的GSM8K基准标准上提示只有八个思想范围的540B参数语言模型,即使超过了具有验证器的FineTuned GPT-3。

We explore how generating a chain of thought -- a series of intermediate reasoning steps -- significantly improves the ability of large language models to perform complex reasoning. In particular, we show how such reasoning abilities emerge naturally in sufficiently large language models via a simple method called chain of thought prompting, where a few chain of thought demonstrations are provided as exemplars in prompting. Experiments on three large language models show that chain of thought prompting improves performance on a range of arithmetic, commonsense, and symbolic reasoning tasks. The empirical gains can be striking. For instance, prompting a 540B-parameter language model with just eight chain of thought exemplars achieves state of the art accuracy on the GSM8K benchmark of math word problems, surpassing even finetuned GPT-3 with a verifier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源