论文标题

通过蝴蝶网络编码的任务感知网络

Task-Aware Network Coding Over Butterfly Network

论文作者

Cheng, Jiangnan, Chinchali, Sandeep, Tang, Ao

论文摘要

网络编码允许分布式信息源(例如传感器)通过带宽限制网络有效地压缩和传输数据到分布式接收器。经典的网络编码在很大程度上是任务不合时宜的 - 编码方案主要旨在忠实地在接收器上重建数据,而不管收到的数据使用的最终任务是什么。在本文中,我们分析了一个新的任务驱动的网络编码问题,其中分布式接收器通过机器学习(ML)任务传递数据,该任务通过传输与显着任务相关的数据表示,提供了提高效率的机会。具体而言,我们在实坐标空间中通过蝴蝶网络制定了一个任务感知的网络编码问题,在该空间中,可以应用主成分分析(PCA)的有损模拟压缩。给出了公式化问题的总损耗函数的下限,还提供了实现此下限的必要条件。我们介绍了ML算法来解决一般情况下的问题,我们的评估证明了任务感知网络编码的有效性。

Network coding allows distributed information sources such as sensors to efficiently compress and transmit data to distributed receivers across a bandwidth-limited network. Classical network coding is largely task-agnostic -- the coding schemes mainly aim to faithfully reconstruct data at the receivers, regardless of what ultimate task the received data is used for. In this paper, we analyze a new task-driven network coding problem, where distributed receivers pass transmitted data through machine learning (ML) tasks, which provides an opportunity to improve efficiency by transmitting salient task-relevant data representations. Specifically, we formulate a task-aware network coding problem over a butterfly network in real-coordinate space, where lossy analog compression through principal component analysis (PCA) can be applied. A lower bound for the total loss function for the formulated problem is given, and necessary and sufficient conditions for achieving this lower bound are also provided. We introduce ML algorithms to solve the problem in the general case, and our evaluation demonstrates the effectiveness of task-aware network coding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源